
Basic Data Structures:
Stacks and Queues

Neil Rhodes
Department of Computer Science and Engineering

University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX


Outline

1 Stacks

2 Queues



Definition
Stack: Abstract data type with the following
operations:

Push(Key): adds key to collection
Key Top(): returns most
recently-added key
Key Pop(): removes and returns most
recently-added key
Boolean Empty(): are there any
elements?



Definition
Stack: Abstract data type with the following
operations:

Push(Key): adds key to collection

Key Top(): returns most
recently-added key
Key Pop(): removes and returns most
recently-added key
Boolean Empty(): are there any
elements?



Definition
Stack: Abstract data type with the following
operations:

Push(Key): adds key to collection
Key Top(): returns most
recently-added key

Key Pop(): removes and returns most
recently-added key
Boolean Empty(): are there any
elements?



Definition
Stack: Abstract data type with the following
operations:

Push(Key): adds key to collection
Key Top(): returns most
recently-added key
Key Pop(): removes and returns most
recently-added key

Boolean Empty(): are there any
elements?



Definition
Stack: Abstract data type with the following
operations:

Push(Key): adds key to collection
Key Top(): returns most
recently-added key
Key Pop(): removes and returns most
recently-added key
Boolean Empty(): are there any
elements?



Balanced Brackets
Input: A string str consisting of ‘(‘, ‘)’, ‘[‘,

‘]’ characters.
Output: Return whether or not the string’s

parentheses and square brackets are
balanced.



Balanced Brackets
Balanced:

``([])[]()'',
``((([([])]))())''

Unbalanced:
``([]]()''
``][''



IsBalanced(str)
Stack stack
for char in str:

if char in [`(`, `[`]:
stack.Push(char)

else:
if stack.Empty(): return False
top← stack.Pop()
if (top = `[` and char != `]') or

(top = `(` and char != `)'):
return False

return stack.Empty()



Stack Implementation with Array

numElements: 0

Push(a)



Stack Implementation with Array

numElements: 0

Push(a)



Stack Implementation with Array

a
numElements: 1

Push(a)



Stack Implementation with Array

a
numElements: 1

Push(a)



Stack Implementation with Array

a
numElements: 1

Push(b)



Stack Implementation with Array

a b
numElements: 2

Push(b)



Stack Implementation with Array

a b
numElements: 2

Push(a)



Stack Implementation with Array

a b
numElements: 2

Top()



Stack Implementation with Array

a b
numElements: 2

Top()→ b



Stack Implementation with Array

a b
numElements: 2

Push(a)



Stack Implementation with Array

a b
numElements: 2

Push(c)



Stack Implementation with Array

a b c
numElements: 3

Push(c)



Stack Implementation with Array

a b c
numElements: 3

Push(a)



Stack Implementation with Array

a b c
numElements: 3

Pop()



Stack Implementation with Array

a b
numElements: 2

Pop()→ c



Stack Implementation with Array

a b
numElements: 2

Push(a)



Stack Implementation with Array

a b
numElements: 2

Push(d)



Stack Implementation with Array

a b d
numElements: 3

Push(d)



Stack Implementation with Array

a b d
numElements: 3

Push(a)



Stack Implementation with Array

a b d
numElements: 3

Push(e)



Stack Implementation with Array

a b d e
numElements: 4

Push(e)



Stack Implementation with Array

a b d e
numElements: 4

Push(a)



Stack Implementation with Array

a b d e
numElements: 4

Push(f)



Stack Implementation with Array

a b d e f
numElements: 5

Push(f)



Stack Implementation with Array

a b d e f
numElements: 5

Push(a)



Stack Implementation with Array

a b d e f
numElements: 5

Push(g)



Stack Implementation with Array

a b d e f
numElements: 5

Push(g)→ ERROR



Stack Implementation with Array

a b d e f
numElements: 5

Push(a)



Stack Implementation with Array

a b d e f
numElements: 5

Empty()



Stack Implementation with Array

a b d e f
numElements: 5

Empty() → False



Stack Implementation with Array

a b d e f
numElements: 5

Push(a)



Stack Implementation with Array

a b d e f
numElements: 5

Pop()



Stack Implementation with Array

a b d e
numElements: 4

Pop()→ f



Stack Implementation with Array

a b d e
numElements: 4

Push(a)



Stack Implementation with Array

a b d e
numElements: 4

Pop()



Stack Implementation with Array

a b d
numElements: 3

Pop()→ e



Stack Implementation with Array

a b d
numElements: 3

Push(a)



Stack Implementation with Array

a b d
numElements: 3

Pop()



Stack Implementation with Array

a b
numElements: 2

Pop()→ d



Stack Implementation with Array

a b
numElements: 2

Push(a)



Stack Implementation with Array

a b
numElements: 2

Pop()



Stack Implementation with Array

a
numElements: 1

Pop()→ b



Stack Implementation with Array

a
numElements: 1

Push(a)



Stack Implementation with Array

a
numElements: 1

Pop()



Stack Implementation with Array

numElements: 0

Pop()→ a



Stack Implementation with Array

numElements: 0

Push(a)



Stack Implementation with Array

numElements: 0

Empty()



Stack Implementation with Array

numElements: 0

Empty() → True



Stack Implementation with Array

numElements: 0

Push(a)



Stack Implementation with
Linked List

head

f e dc b a

Push(a)



Stack Implementation with
Linked List

head

f e dc b a

Push(a)



Stack Implementation with
Linked List

head

f e dc b

a

Push(a)



Stack Implementation with
Linked List

head

f e dc b

a

Push(a)



Stack Implementation with
Linked List

head

f e dc b

a

Push(b)



Stack Implementation with
Linked List

head

f e dc

b a

Push(b)



Stack Implementation with
Linked List

head

f e dc

b a

Push(a)



Stack Implementation with
Linked List

head

f e dc

b a

Top()



Stack Implementation with
Linked List

head

f e dc

b a

Top()→ b



Stack Implementation with
Linked List

head

f e dc

b a

Push(a)



Stack Implementation with
Linked List

head

f e dc

b a

Push(c)



Stack Implementation with
Linked List

head

f e d

c b a

Push(c)



Stack Implementation with
Linked List

head

f e d

c b a

Push(a)



Stack Implementation with
Linked List

head

f e d

c b a

Pop()



Stack Implementation with
Linked List

head

f e dc

b a

Pop()→ c



Stack Implementation with
Linked List

head

f e dc

b a

Push(a)



Stack Implementation with
Linked List

head

f e dc

b a

Push(d)



Stack Implementation with
Linked List

head

f e

d

c

b a

Push(d)



Stack Implementation with
Linked List

head

f e

d

c

b a

Push(a)



Stack Implementation with
Linked List

head

f e

d

c

b a

Push(e)



Stack Implementation with
Linked List

head

f

e d

c

b a

Push(e)



Stack Implementation with
Linked List

head

f

e d

c

b a

Push(a)



Stack Implementation with
Linked List

head

f

e d

c

b a

Push(f)



Stack Implementation with
Linked List

head
f e d

c

b a

Push(f)



Stack Implementation with
Linked List

head
f e d

c

b a

Push(a)



Stack Implementation with
Linked List

head
f e d

c

b a

Empty()



Stack Implementation with
Linked List

head
f e d

c

b a

Empty() → False



Stack Implementation with
Linked List

head
f e d

c

b a

Push(a)



Stack Implementation with
Linked List

head
f e d

c

b a

Pop()



Stack Implementation with
Linked List

head

f

e d

c

b a

Pop()→ f



Stack Implementation with
Linked List

head

f

e d

c

b a

Push(a)



Stack Implementation with
Linked List

head

f

e d

c

b a

Pop()



Stack Implementation with
Linked List

head

f e

d

c

b a

Pop()→ e



Stack Implementation with
Linked List

head

f e

d

c

b a

Push(a)



Stack Implementation with
Linked List

head

f e

d

c

b a

Pop()



Stack Implementation with
Linked List

head

f e dc

b a

Pop()→ d



Stack Implementation with
Linked List

head

f e dc

b a

Push(a)



Stack Implementation with
Linked List

head

f e dc

b a

Pop()



Stack Implementation with
Linked List

head

f e dc b

a

Pop()→ b



Stack Implementation with
Linked List

head

f e dc b

a

Push(a)



Stack Implementation with
Linked List

head

f e dc b

a

Pop()



Stack Implementation with
Linked List

head

f e dc b a

Pop()→ a



Stack Implementation with
Linked List

head

f e dc b a

Push(a)



Stack Implementation with
Linked List

head

f e dc b a

Empty()



Stack Implementation with
Linked List

head

f e dc b a

Empty() → True



Stack Implementation with
Linked List

head

f e dc b a

Push(a)



Stack Implementation with
Linked List

head
f e dc b a



Stack Implementation with
Linked List

head
f e dc b a



Stack Implementation with
Linked List

head
f e dc b a

Push(a)



Summary

Stacks can be implemented with either
an array or a linked list.

Each stack operation is O(1): Push,
Pop, Top, Empty.
Stacks are ocassionaly known as LIFO
queues.



Summary

Stacks can be implemented with either
an array or a linked list.
Each stack operation is O(1): Push,
Pop, Top, Empty.

Stacks are ocassionaly known as LIFO
queues.



Summary

Stacks can be implemented with either
an array or a linked list.
Each stack operation is O(1): Push,
Pop, Top, Empty.
Stacks are ocassionaly known as LIFO
queues.



Outline

1 Stacks

2 Queues



Definition
Queue: Abstract data type with the following
operations:

Enqueue(Key): adds key to collection
Key Dequeue(): removes and returns
least recently-added key
Boolean Empty(): are there any
elements?

FIFO: First-In, First-Out



Definition
Queue: Abstract data type with the following
operations:

Enqueue(Key): adds key to collection

Key Dequeue(): removes and returns
least recently-added key
Boolean Empty(): are there any
elements?

FIFO: First-In, First-Out



Definition
Queue: Abstract data type with the following
operations:

Enqueue(Key): adds key to collection
Key Dequeue(): removes and returns
least recently-added key

Boolean Empty(): are there any
elements?

FIFO: First-In, First-Out



Definition
Queue: Abstract data type with the following
operations:

Enqueue(Key): adds key to collection
Key Dequeue(): removes and returns
least recently-added key
Boolean Empty(): are there any
elements?

FIFO: First-In, First-Out



Definition
Queue: Abstract data type with the following
operations:

Enqueue(Key): adds key to collection
Key Dequeue(): removes and returns
least recently-added key
Boolean Empty(): are there any
elements?

FIFO: First-In, First-Out



Queue Implementation with
Linked List

head tail

a b c d e f

Push(a)



Queue Implementation with
Linked List

head tail

a b c d e f

Enqueue(a)



Queue Implementation with
Linked List

head tail
a

b c d e f

Enqueue(a)



Queue Implementation with
Linked List

head tail
a

b c d e f

Push(a)



Queue Implementation with
Linked List

head tail
a

b c d e f

Enqueue(b)



Queue Implementation with
Linked List

head tail
a b

c d e f

Enqueue(b)



Queue Implementation with
Linked List

head tail
a b

c d e f

Push(a)



Queue Implementation with
Linked List

head tail
a b

c d e f

Empty()



Queue Implementation with
Linked List

head tail
a b

c d e f

Empty()→ False



Queue Implementation with
Linked List

head tail
a b

c d e f

Push(a)



Queue Implementation with
Linked List

head tail
a b

c d e f

Enqueue(c)



Queue Implementation with
Linked List

head tail
a b c

d e f

Enqueue(c)



Queue Implementation with
Linked List

head tail
a b c

d e f

Push(a)



Queue Implementation with
Linked List

head tail
a b c

d e f

Dequeue()



Queue Implementation with
Linked List

head tail

a

b c

d e f

Dequeue()→ a



Queue Implementation with
Linked List

head tail

a

b c

d e f

Push(a)



Queue Implementation with
Linked List

head tail

a

b c

d e f

Enqueue(d)



Queue Implementation with
Linked List

head tail

a

b c d

e f

Enqueue(d)



Queue Implementation with
Linked List

head tail

a

b c d

e f

Push(a)



Queue Implementation with
Linked List

head tail

a

b c d

e f

Enqueue(e)



Queue Implementation with
Linked List

head tail

a

b c d e

f

Enqueue(e)



Queue Implementation with
Linked List

head tail

a

b c d e

f

Push(a)



Queue Implementation with
Linked List

head tail

a

b c d e

f

Enqueue(f)



Queue Implementation with
Linked List

head tail

a

b c d e f

Enqueue(f)



Queue Implementation with
Linked List

head tail

a

b c d e f

Push(a)



Queue Implementation with
Linked List

head tail

a

b c d e f

Dequeue()



Queue Implementation with
Linked List

head tail

a

b c d e f

Dequeue()→ b



Queue Implementation with
Linked List

head tail

a b

c d e f

Push(a)



Queue Implementation with
Linked List

head tail

a b

c d e f

Dequeue()



Queue Implementation with
Linked List

head tail

a b c

d e f

Dequeue()→ c



Queue Implementation with
Linked List

head tail

a b c

d e f

Push(a)



Queue Implementation with
Linked List

head tail

a b c

d e f

Dequeue()



Queue Implementation with
Linked List

head tail

a b c d

e f

Dequeue()→ d



Queue Implementation with
Linked List

head tail

a b c d

e f

Push(a)



Queue Implementation with
Linked List

head tail

a b c d

e f

Dequeue()



Queue Implementation with
Linked List

head tail

a b c d e

f

Dequeue()→ e



Queue Implementation with
Linked List

head tail

a b c d e

f

Push(a)



Queue Implementation with
Linked List

head tail

a b c d e

f

Dequeue()



Queue Implementation with
Linked List

head tail

a b c d e f

Dequeue()→ f



Queue Implementation with
Linked List

head tail

a b c d e f

Push(a)



Queue Implementation with
Linked List

head tail

a b c d e f

Empty()



Queue Implementation with
Linked List

head tail

a b c d e f

Empty() → True



Queue Implementation with
Linked List

head tail

a b c d e f

Push(a)



Queue Implementation with
Linked List

Enqueue: use List.PushBack

Dequeue: use List.TopFront and
List.PopFront
Empty: use List.Empty



Queue Implementation with
Linked List

Enqueue: use List.PushBack
Dequeue: use List.TopFront and
List.PopFront

Empty: use List.Empty



Queue Implementation with
Linked List

Enqueue: use List.PushBack
Dequeue: use List.TopFront and
List.PopFront
Empty: use List.Empty



Queue Implementation with Array

0
read

0
write

Push(a)



Queue Implementation with Array

0
read

0
write

Enqueue(a)



Queue Implementation with Array

0
read

1
write

a

Enqueue(a)



Queue Implementation with Array

0
read

1
write

a

Push(a)



Queue Implementation with Array

0
read

1
write

a

Enqueue(b)



Queue Implementation with Array

0
read

2
write

a b

Enqueue(b)



Queue Implementation with Array

0
read

2
write

a b

Push(a)



Queue Implementation with Array

0
read

2
write

a b

Empty()



Queue Implementation with Array

0
read

2
write

a b

Empty()→ False



Queue Implementation with Array

0
read

2
write

a b

Push(a)



Queue Implementation with Array

0
read

2
write

a b

Enqueue(c)



Queue Implementation with Array

0
read

3
write

a b c

Enqueue(c)



Queue Implementation with Array

0
read

3
write

a b c

Push(a)



Queue Implementation with Array

0
read

3
write

a b c

Dequeue()



Queue Implementation with Array

1
read

3
write

b c

Dequeue()→ a



Queue Implementation with Array

1
read

3
write

b c

Push(a)



Queue Implementation with Array

1
read

3
write

b c

Dequeue()



Queue Implementation with Array

2
read

3
write

c

Dequeue()→ b



Queue Implementation with Array

2
read

3
write

c

Push(a)



Queue Implementation with Array

2
read

3
write

c

Enqueue(d)



Queue Implementation with Array

2
read

4
write

c d

Enqueue(d)



Queue Implementation with Array

2
read

4
write

c d

Push(a)



Queue Implementation with Array

2
read

4
write

c d

Enqueue(e)



Queue Implementation with Array

2
read

0
write

c d e

Enqueue(e)



Queue Implementation with Array

2
read

0
write

c d e

Push(a)



Queue Implementation with Array

2
read

0
write

c d e

Enqueue(f)



Queue Implementation with Array

2
read

1
write

f c d e

Enqueue(f)



Queue Implementation with Array

2
read

1
write

f c d e

Push(a)



Queue Implementation with Array

2
read

1
write

f c d e

Enqueue(g)



Queue Implementation with Array

2
read

1
write

f c d e

Enqueue(g)→ ERROR



Queue Implementation with Array

2
read

1
write

f c d e

Push(a)



Queue Implementation with Array

2
read

1
write

f c d e

Dequeue()



Queue Implementation with Array

3
read

1
write

f d e

Dequeue()→ c



Queue Implementation with Array

3
read

1
write

f d e

Push(a)



Queue Implementation with Array

3
read

1
write

f d e

Dequeue()



Queue Implementation with Array

4
read

1
write

f e

Dequeue()→ d



Queue Implementation with Array

4
read

1
write

f e

Push(a)



Queue Implementation with Array

4
read

1
write

f e

Dequeue()



Queue Implementation with Array

0
read

1
write

f

Dequeue()→ e



Queue Implementation with Array

0
read

1
write

f

Push(a)



Queue Implementation with Array

0
read

1
write

f

Dequeue()



Queue Implementation with Array

1
read

1
write

Dequeue()→ f



Queue Implementation with Array

1
read

1
write

Push(a)



Queue Implementation with Array

1
read

1
write

Empty()



Queue Implementation with Array

1
read

1
write

Empty() → True



Summary

Queues can be implemented with either
a linked list (with tail pointer) or an
array.
Each queue operation is O(1):
Enqueue, Dequeue, Empty.



Summary

Queues can be implemented with either
a linked list (with tail pointer) or an
array.

Each queue operation is O(1):
Enqueue, Dequeue, Empty.



Summary

Queues can be implemented with either
a linked list (with tail pointer) or an
array.
Each queue operation is O(1):
Enqueue, Dequeue, Empty.


	Stacks
	Queues

