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Stack: Abstract data type with the following
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Push(Key): adds key to collection
Key Top(): returns most
recently-added key
Key Pop(): removes and returns most
recently-added key
Boolean Empty(): are there any
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Balanced Brackets
Input: A string str consisting of ‘(‘, ‘)’, ‘[‘,

‘]’ characters.
Output: Return whether or not the string’s

parentheses and square brackets are
balanced.



Balanced Brackets
Balanced:

``([])[]()'',
``((([([])]))())''

Unbalanced:
``([]]()''
``][''



IsBalanced(str)
Stack stack
for char in str:

if char in [`(`, `[`]:
stack.Push(char)

else:
if stack.Empty(): return False
top← stack.Pop()
if (top = `[` and char != `]') or

(top = `(` and char != `)'):
return False

return stack.Empty()
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queues.
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